InterviewSolution
Saved Bookmarks
| 1. |
Solve the following equation : `3^(x+2)+3^(-x)=10` |
|
Answer» Given equation is `3^(x+2)+3^(-x)=10` `implies3^(x)xx3^(2)+(1)/(3^(x))=10implies9xx3^(x)+(1)/(3^(x))=10" ".....(2)` Let `3^(x)=a``3^(x)=a" "......(2)` Then from (1) `9a+(1)/(a)=10` `implies9a^(2)+1=10a " "implies9a^(2)-10a+1=0` `implies9a^(2)-(9+1)a+1=0" "implies9a^(2)-9a-a+1=0` `implies9a(a-1)-1(a-1)=0" "implies(9a-1)(a-1)=0` `implies9a-1=0" "or" "a-1=0` when `9a-1=0impliesa=(1)/(9)` and when `a-1=0impliesa=1` Substituting values of a in equation (2) when `a=(1)/(9)` `3^(x)=(1)/(9)" "implies" "3^(x)=(1)/(3^(2)` `implies3^(x)=3^(-2)" "or" "x=-2` when a=1 `3^(x)=1` `implies3^(x)=3^(0)" "implies" "x=0` Hence, 0 and -2 are roots of the equation. |
|