InterviewSolution
Saved Bookmarks
| 1. |
Solve the following linear inequations in R(4+2x)/3 ≥ x/2 - 3\(\frac{4+2x}{3}\) ≥ \(\frac{x}{2}\) - 3 |
|
Answer» Given, (4+2x)/3 ≥ x/2 - 3 ⇒ \(\frac{4+2x}{3}\) ≥ \(\frac{x-6}{2}\) ⇒ \((\frac{4+2x}{3})\) \(\times\) 3 \(\times\) 2 ≥ \((\frac{x-6}{2})\) \(\times\) 3 \(\times\) 2 ⇒ 2(4 + 2x) ≥ 3(x – 6) ⇒ 8 + 4x ≥ 3x – 18 ⇒ 8 + 4x – 8 ≥ 3x – 18 – 8 ⇒ 4x ≥ 3x – 26 ⇒ 4x – 3x ≥ 3x – 26 – 3x ∴ x ≥ –26 Thus, The solution of the given inequation is [–26, ∞). |
|