1.

Solve the following linear inequations in R2(3-x) ≥ x/5 + 4

Answer»

Given,

2(3-x) ≥ x/5 + 4

⇒ 6 - 2x ≥ \(\frac{x}{5}\)+ 4

⇒ 6 - 2x ≥ \(\frac{x+20}{5}\)

⇒ (6 - 2x) x 5 ≥ (\(\frac{x+20}{5}\)) x 5

⇒ 30 – 10x ≥ x + 20 

⇒ x + 20 ≤ 30 – 10x 

⇒ x + 20 – 20 ≤ 30 – 10x – 20 

⇒ x ≤ 10 – 10x 

⇒ x + 10x ≤ 10 – 10x + 10x 

⇒ 11x ≤ 10

⇒ \(\frac{11x}{11}\) ≤ \(\frac{10}{11}\)

∴ x ≤ \(\frac{10}{11}\)

Thus,

The solution of the given inequation is (-∞,\(\frac{10}{11}\)].

we have

2(3−x)≥5x​+4x∈R

10(3−x)≥x+20

30−10x≥x+20

10≥11x

x≤1110​

so x∈(−∞,1110​]

Therefore x∈(−∞,1110​]



Discussion

No Comment Found