InterviewSolution
Saved Bookmarks
| 1. |
Solve the following linear inequations in R2(3-x) ≥ x/5 + 4 |
|
Answer» Given, 2(3-x) ≥ x/5 + 4 ⇒ 6 - 2x ≥ \(\frac{x}{5}\)+ 4 ⇒ 6 - 2x ≥ \(\frac{x+20}{5}\) ⇒ (6 - 2x) x 5 ≥ (\(\frac{x+20}{5}\)) x 5 ⇒ 30 – 10x ≥ x + 20 ⇒ x + 20 ≤ 30 – 10x ⇒ x + 20 – 20 ≤ 30 – 10x – 20 ⇒ x ≤ 10 – 10x ⇒ x + 10x ≤ 10 – 10x + 10x ⇒ 11x ≤ 10 ⇒ \(\frac{11x}{11}\) ≤ \(\frac{10}{11}\) ∴ x ≤ \(\frac{10}{11}\) Thus, The solution of the given inequation is (-∞,\(\frac{10}{11}\)]. we have2(3−x)≥5x+4x∈R10(3−x)≥x+2030−10x≥x+2010≥11xx≤1110so x∈(−∞,1110]Therefore x∈(−∞,1110] |
|