1.

Solve the following quadratic equations by factorization:Solve for x: \(\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3},x\neq2,4\)

Answer»

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized.

\(\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3},x\neq2,4\)

⇒ 3(x– 1)(x – 4) + 3(x – 2)(x – 3) = 10(x – 2)(x – 4) 

⇒ 3x2 + 12 – 15x + 3x2 + 18 – 15x = 10x2 – 60x + 80 

⇒ 4x2 – 30x + 50 = 0 

⇒ 2x2 – 15x + 25 = 0 

⇒ 2x2 – 10x – 5x + 25 = 0 

⇒ 2x(x – 5) – 5(x – 5) = 0 

⇒ (2x – 5)(x – 5) = 0 

Thus, x = 5/2, 5



Discussion

No Comment Found