1.

Solve the following quadratic equations: ix2 – x + 12i = 0

Answer»

ix2 – x + 12i = 0 

Given ix2 – x + 12i = 0 

⇒ ix2 + x(–1) + 12i = 0 

We have i2 = –1 

By substituting –1 = i2 in the above equation, we get 

 ix2+ xi2 + 12i = 0 

⇒ i(x2 + ix + 12) = 0 

⇒ x2 + ix + 12 = 0 

⇒ x2 + ix – 12(–1) = 0 

⇒ x2 + ix – 12i2 = 0 [∵ i2 = –1] 

⇒ x2 – 3ix + 4ix – 12i2 = 0 

⇒ x(x – 3i) + 4i(x – 3i) = 0 

⇒ (x – 3i)(x + 4i) = 0 

⇒ x – 3i = 0 or x + 4i = 0 

∴ x = 3i or –4i 

Thus, the roots of the given equation are 3i and –4i.



Discussion

No Comment Found