InterviewSolution
Saved Bookmarks
| 1. |
Solve the following quadratics x2 + 2x + 2 = 0 |
|
Answer» Given x2 + 2x + 2 = 0 ⇒ x2+ 2x + 1 + 1 = 0 ⇒ x2 + 2(x)(1) + 12 + 1 = 0 ⇒ (x + 1)2 + 1 = 0 [∵ (a + b)2 = a2 + 2ab + b2] We have i2 = –1 ⇒ 1 = –i2 By substituting 1 = –i2 in the above equation, we get (x + 1)2 + (–i2) = 0 ⇒ (x + 1)2 – i2 = 0 ⇒ (x + 1)2 – (i)2 = 0 ⇒ (x + 1 + i)(x + 1 – i) = 0 [∵ a2 – b2 = (a + b)(a – b)] ⇒ x + 1 + i = 0 or x + 1 – i = 0 ⇒ x = –1 – i or x = –1 + i ∴ x = –1 ± i Thus, the roots of the given equation are –1 ± i. |
|