InterviewSolution
Saved Bookmarks
| 1. |
Solve the following system of equations by matrix method:(i) x + y − z = 32x + 3y + z = 103x − y − 7z = 1(ii) x + y + z = 32x − y + z = − 12x + y − 3z = − 9(iii) 6x − 12y + 25z = 44x + 15y − 20z = 32x + 18y + 15z = 10(iv) 3x + 4y + 7z = 142x − y + 3z = 4x + 2y − 3z = 0(v)2x-3y+3z=101x+1y+1z=103x-1y+2z=13(vi) 5x + 3y + z = 162x + y + 3z = 19x + 2y + 4z = 25(vii) 3x + 4y + 2z = 82y − 3z = 3x − 2y + 6z = −2(viii) 2x + y + z = 2x + 3y − z = 53x + y − 2z = 6(ix) 2x + 6y = 23x − z = −82x − y + z = −3(x) x − y + z = 22x − y = 02y − z = 1(xi) 8x + 4y + 3z = 182x + y +z = 5x + 2y + z = 5(xii) x + y + z = 6x + 2z = 73x + y + z = 12(xiii) 2x+3y+10z=4, 4x-6y+5z=1, 6x+9y-20z=2;x, y, z≠0(xiv) x − y + 2z = 73x + 4y − 5z = −52x − y + 3z = 12 |
|
Answer» Solve the following system of equations by matrix method: (i) x + y − z = 3 2x + 3y + z = 10 3x − y − 7z = 1 (ii) x + y + z = 3 2x − y + z = − 1 2x + y − 3z = − 9 (iii) 6x − 12y + 25z = 4 4x + 15y − 20z = 3 2x + 18y + 15z = 10 (iv) 3x + 4y + 7z = 14 2x − y + 3z = 4 x + 2y − 3z = 0 (v) (vi) 5x + 3y + z = 16 2x + y + 3z = 19 x + 2y + 4z = 25 (vii) 3x + 4y + 2z = 8 2y − 3z = 3 x − 2y + 6z = −2 (viii) 2x + y + z = 2 x + 3y − z = 5 3x + y − 2z = 6 (ix) 2x + 6y = 2 3x − z = −8 2x − y + z = −3 (x) x − y + z = 2 2x − y = 0 2y − z = 1 (xi) 8x + 4y + 3z = 18 2x + y +z = 5 x + 2y + z = 5 (xii) x + y + z = 6 x + 2z = 7 3x + y + z = 12 (xiii) (xiv) x − y + 2z = 7 3x + 4y − 5z = −5 2x − y + 3z = 12 |
|