1.

Solve the following system of equations by matrix method:(i) x + y − z = 32x + 3y + z = 103x − y − 7z = 1(ii) x + y + z = 32x − y + z = − 12x + y − 3z = − 9(iii) 6x − 12y + 25z = 44x + 15y − 20z = 32x + 18y + 15z = 10(iv) 3x + 4y + 7z = 142x − y + 3z = 4x + 2y − 3z = 0(v)2x-3y+3z=101x+1y+1z=103x-1y+2z=13(vi) 5x + 3y + z = 162x + y + 3z = 19x + 2y + 4z = 25(vii) 3x + 4y + 2z = 82y − 3z = 3x − 2y + 6z = −2(viii) 2x + y + z = 2x + 3y − z = 53x + y − 2z = 6(ix) 2x + 6y = 23x − z = −82x − y + z = −3(x) x − y + z = 22x − y = 02y − z = 1(xi) 8x + 4y + 3z = 182x + y +z = 5x + 2y + z = 5(xii) x + y + z = 6x + 2z = 73x + y + z = 12(xiii) 2x+3y+10z=4, 4x-6y+5z=1, 6x+9y-20z=2;x, y, z≠0(xiv) x − y + 2z = 73x + 4y − 5z = −52x − y + 3z = 12

Answer» Solve the following system of equations by matrix method:

(i) x + yz = 3

2x + 3y + z = 10

3xy − 7z = 1



(ii) x + y + z = 3

2xy + z = − 1

2x + y − 3z = − 9



(iii) 6x − 12y + 25z = 4

4x + 15y − 20z = 3

2x + 18y + 15z = 10



(iv) 3x + 4y + 7z = 14

2xy + 3z = 4

x + 2y − 3z = 0



(v)

2x-3y+3z=101x+1y+1z=103x-1y+2z=13



(vi) 5x + 3y + z = 16

2x + y + 3z = 19

x + 2y + 4z = 25



(vii) 3x + 4y + 2z = 8

2y − 3z = 3

x − 2y + 6z = −2



(viii) 2x + y + z = 2

x + 3yz = 5

3x + y − 2z = 6



(ix) 2x + 6y = 2

3xz = −8

2xy + z = −3



(x) xy + z = 2

2xy = 0

2yz = 1



(xi) 8x + 4y + 3z = 18

2x + y +z = 5

x + 2y + z = 5



(xii) x + y + z = 6

x + 2z = 7

3x + y + z = 12



(xiii) 2x+3y+10z=4, 4x-6y+5z=1, 6x+9y-20z=2;x, y, z0



(xiv) xy + 2z = 7

3x + 4y − 5z = −5

2x y + 3z = 12


Discussion

No Comment Found