1.

Solve the quadratic equation: ix2 – 4x – 4i = 0

Answer»

Given as ix2 – 4x – 4i = 0

ix2 + 4x(–1) – 4i = 0 [as we know, i2 = –1]

Therefore by substituting –1 = i2 in the above equation, we get

ix2 + 4xi2 – 4i = 0

i(x2 + 4ix – 4) = 0

x2 + 4ix – 4 = 0

x2 + 4ix + 4(–1) = 0

x2 + 4ix + 4i2 = 0 [Since, i2 = –1]

x2 + 2ix + 2ix + 4i2 = 0

x(x + 2i) + 2i(x + 2i) = 0

(x + 2i) (x + 2i) = 0

(x + 2i)2 = 0

x + 2i = 0

x = –2i, -2i

Therefore, the roots of the given equation are –2i, –2i



Discussion

No Comment Found