| 1. |
Solve this Ques of jee main exam February session 2021 |
Answer» EXPLANATION.⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². As we know that, Range of sinθ = [-1,1]. There are three digit exists between [-1,1]. ⇒ - 1, 0, 1. ⇒ [x² + 1/3]. in this particular equation, we get. Only two POSSIBILITY exists = 0,1. ⇒ [x² - 2/3]. In this particular case, we get. Three possibility exists = -1, 0, 1. Total we can SAY that, There are six [6] possibility exists. ⇒ [x² + 1/3] [x² - 2/3]. ⇒ 0 -1. ⇒ 0 0. ⇒ 0 1. ⇒ 1 -1. ⇒ 1 0. ⇒ 1 1. Now, we can equation as, ⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². PUT the value (0, -1) in the equation, we get. ⇒ sin⁻¹[(0)² + 1/3] + cos⁻¹[(-1)² - 2/3] = x². ⇒ sin⁻¹(0) + cos⁻¹(1) = x². ⇒ 0 + π = x². [L.H.S.] Now again put the value of x² = π in the equation, we get. ⇒ sin⁻¹[π + 1/3] + cos⁻¹[π - 2/3] = π. ⇒ sin⁻¹[3.14 + 0.33] + cos⁻¹[3.14 - 0.6667] = π. [R.H.S.] As we can see that, ⇒ L.H.S ≠ R.H.S. So 1st possibility is rejected. Put the value (0,0) in the equation, we get. ⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². ⇒ sin⁻¹[(0)² + 1/3] + cos⁻¹[(0)² - 2/3] = x². ⇒ sin⁻¹(0) + cos⁻¹[0] = x². ⇒ 0 + π/2 = x². [L.H.S.] Put the value of π/2 in the equation, we get. ⇒ sin⁻¹[π/2 + 1/3] + cos⁻¹[π/2 - 2/3] = π/2. ⇒ sin⁻¹[1.57 + 0.33] + cos⁻¹[1.57 - 0.667] = 1.57. [R.H.S.] As we can see that, ⇒ L.H.S. ≠ R.H.S. So 2nd possibility is ALSO rejected. Put the value (0,-1) in the equation, we get. ⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². ⇒ sin⁻¹[(0)² + 1/3] + cos⁻¹[(-1)² - 2/3] = x². ⇒ sin⁻¹(0) + cos⁻¹(1) = x². ⇒ 0 + 0 = x². [L.H.S.]. Put the value of x² = 0 in the equation, we get. ⇒ sin⁻¹[0 + 1/3] + cos⁻¹[0 - 2/3] = 0. ⇒ sin⁻¹(0) + cos⁻¹(-1) = 0. [R.H.S]. As we can see that, ⇒ L.H.S. ≠ R.H.S. So 3rd possibility is also rejected. Put the value (1, -1) in the equation, we get. ⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². ⇒ sin⁻¹[(1)² + 1/3] + cos⁻¹[(-1)² - 2/3] = x². ⇒ sin⁻¹(1) + cos⁻¹(-1) = x². ⇒ π/2 + π = x². ⇒ 3π/2 = x². [L.H.S.]. Put the value of x² = 3π/2 in the equation, we get. ⇒ sin⁻¹[3π/2 + 1/3] + cos⁻¹[3π/2 - 2/3] = 3π/2. ⇒ sin⁻¹[9π + 2/6] + cos⁻¹[9π - 4/6] = 3π/2. [R.H.S.]. As we can see that, ⇒ L.H.S. ≠ R.H.S. So, 4th possibility is also rejected. Put the value (1,0) in the equation, we get. ⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². ⇒ sin⁻¹[(1)² + 1/3] + cos⁻¹[(0)² - 2/3] = x². ⇒ sin⁻¹(1) + cos⁻¹(0) = x². ⇒ π/2 + π/2 = x². ⇒ x² = π. [L.H.S.]. Put the value of x² = π in the equation, we get. ⇒ sin⁻¹[π + 1/3] + cos⁻¹[π - 2/3] = π. ⇒ sin⁻¹[3.14 + 0.33] + cos⁻¹[3.14 - 0.667] = π. [R.H.S.]. As we can see that, ⇒ L.H.S. ≠ R.H.S. So 5th possibility is also rejected. Put the value (1,1) in the equation, we get. ⇒ sin⁻¹[x² + 1/3] + cos⁻¹[x² - 2/3] = x². ⇒ sin⁻¹[(1)² + 1/3] + cos⁻¹[(1)² - 2/3] = x². ⇒ sin⁻¹(1) + cos⁻¹(1) = x². ⇒ π/2 = x². [L.H.S.]. Put the value of x² = π/2 in the equation, we get. ⇒ sin⁻¹[π/2 + 1/3] + cos⁻¹[π/2 - 2/3] = π/2. ⇒ sin⁻¹[1.57 + 1.33] + cos⁻¹[1.57 - 0.667] = 1.57. [R.H.S.]. As we can see that, ⇒ L.H.S. ≠ R.H.S. So 6th possibility is also rejected. As we can observe all the possibility and see that no one possibility is matched. Hence, Number of solutions = 0. Option [A] is correct answer. |
|