1.

\(\sqrt{3+{\sqrt5}}\) = .........A) √2 + 12.B) \(\sqrt{\cfrac{8}{2}}\) + \(\sqrt{\cfrac{1}{2}}\)C) \(\sqrt{\cfrac{7}{2}}\) - \(\sqrt{\cfrac{1}{2}}\)D)  \(\sqrt{\cfrac{9}{2}}\) - \(\sqrt{\cfrac{3}{2}}\)

Answer»

Correct option is (C) \(\sqrt\frac{5}{2}+\sqrt\frac{1}{2}\)

Let \(\sqrt{3+\sqrt5} \) \(=\sqrt a+\sqrt b\)

\(\Rightarrow\) \(3+\sqrt5\) \(=(\sqrt a+\sqrt b)^2\)   (By squaring both sides)

\(\Rightarrow\) \(a+b+2\sqrt{ab}\) \(=3+\sqrt5\)

\(\Rightarrow\) \(a+b+\sqrt{4ab}\) \(=3+\sqrt5\)

\(\Rightarrow\) a+b = 3 and 4ab = 5  _______(1) (By comparing rational and irrational parts of both rational numbers)

Now, \((a-b)^2=(a+b)^2-4ab\)

\(=3^2-5\) = 9 - 5 = 4

\(\therefore\) a - b = 2  (Let)             _______(2)

From (1) and (2), we obtain

(a+b) + (a-b) = 3+2

\(\Rightarrow\) 2a = 5

\(\Rightarrow\) \(a=\frac52\)

Then from (1), b = 3 - a

\(=3-\frac52=\frac12\)

\(\therefore\) \(\sqrt{3+\sqrt5} \) \(=\sqrt a+\sqrt b\)

\(=\sqrt{\frac52}+\sqrt{\frac12}\)

Correct option is C) \(\sqrt{\cfrac{7}{2}}\) - \(\sqrt{\cfrac{1}{2}}\)



Discussion

No Comment Found