1.

सरलतम रूप में लिखिए - `tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))), a gt 0 :(-a)/(sqrt3) le x le (a)/(sqrt3).`

Answer» माना `x=a tan theta`
`rArr" "tan theta=(x)/(a)`
`rArr" "theta=tan^(-1)((x)/(a))`
चूँकि`" "-(a)/(sqrt3) lt x lt (a)/(sqrt3)`
`rArr" "-(a)/(sqrt3) lt a tan theta lt (a)/(sqrt3)`
`rArr" "-(1)/(sqrt3) lt tan theta lt (1)/(sqrt3)`
अब, `tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))]`
`=tan^(-1)[(3a^(2).a tan theta-a^(3) tan^(3)theta)/(a^(3)-3a.a^(2)tan^(2)theta)]`
`=tan^(-1)[(a^(3)(3tan theta-tan^(3)theta))/(a^(3)(1-3tan^(2)theta))]`
`=tan^(-1)[(3tan theta-tan^(3)theta)/(1-3tan^(2)theta)]`
`=tan^(-1)(tan3 theta)`
`=3theta`
`=3tan^(-1).(x)/(a)` जो कि अभीष्ट सरलतम रूप है।


Discussion

No Comment Found