InterviewSolution
Saved Bookmarks
| 1. |
Stament -1: If for any real `x,2^(1+x)+2^(1-x),lamda and3^(x)+3^(-x)` are three equidistant terms of an A.P., then `lamdage3`. Statement -2: `AMgeGM`A. Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.B. Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.C. Statement -1 is true, Statement -2 is False.D. Statement -1 is False, Statement -2 is True. |
|
Answer» Correct Answer - A As `2^(1+x)+2^(1-x),lamdaand3^(x)+3^(-x)` are three equidistant terms of an A.P. `:." "2^(1+x)+2^(1-x),lamdaand3^(x)+3^(-x)` are in A.P. `rArr" "2lamda=2^(1+x)+2^(1-x)+3^(x)+3^(-x)` `rArr" "2lamda=2(2^(x)+2^(-x))+(3^(x)+3^(-x))` Now, `AMgtGM` `rArr" "2^(x)+2^(-x)ge2and3^(x)+3^(-x)ge2` `rArr" "2(2^(x)+2^(-x))+(3^(x)+3^(-x))ge4+2rArr2lamdage6rArrlamdage3` |
|