InterviewSolution
Saved Bookmarks
| 1. |
Statement-1: `cos36^(@)gttan36^(@)` Statement-2: `cos36^(@)gtsin36^(@)`A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement -1.B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.C. Statement-1 is True, Statement-2 is False.D. Statement-1 is False, Statement-2 is True. |
|
Answer» Correct Answer - B For `0lethetalt(pi)/(4),"we have" cos thetagtsintheta.` So, statement-2 is true. Now, `cos36^(@)-tan36^(@)` `=(cos^(2)36^(@)-sin36^(@))/(cos36^(@))` `=(1+cos72^(@)-2sin36^(@))/(2cos36^(@))` `=(1+sin18^(@)-2sin(30^(@)+6))/(2cos36^(@))` `=(1+2sin9^(@)cos9^(@)-2(sin30^(@)cos6^(@)+cos30^(@)sin60^(@)))/(2cos36^(@))` `=1+2sin9^(@)cos9^(@)-cos6^(@)-2cos30^(@)sin6^(@)` `=(1-cos6^(@))+2(sin9^(@)cos9^(@)-cos30^(@)sin6^(@))` `gt[because1-cos6^(@)gt0and sin9^(@)cos9^(@)gtcos30^(@)sin6^(@)]` `thereforecos36^(@)-tan36^(@)gt0impliescos36^(@)gttan36^(@)` So, statement-2 is true. But statement-2 is not a correct explanation for statement-1. |
|