1.

Statement-1 `e^(x)+e^(-x) gt 2 +x^2` is an increasing function on R.A. Statement-1 True statement -1 is True,Statement -2 is True statement -2 is a correct explanation for Statement-3B. Statement-1 True statement -1 is True,Statement -2 is True statement -2 is not a correct explanation for Statement-3C. Statement-1 True statement -1 is True,Statement -2 is FalseD. Statement-1 is False ,Statement -2 is True

Answer» Correct Answer - A
We have
`f(x)=e^x+e^(-x)-2-x^2`
`rArr f(x)=e^x-e^(-x)-2x`
`rArr f(x)= e^x+e^(-x)-2=((e^x-1)^2)/(e^x)gt 0 `for all `x ne 0` ltbr gt `rArr ` f(x) in increasing in R
`rArr f(x) gt f(0) " for all " x in R , x ne 0 `
`f(x) gt 0 "for all " x (ne 0) in R`
`f (x) gt f(0) " for all " x ne 0 `
`e^x+e^(-x)-2-x^2 lt 0 " for all " x ne 0 `
`rArr e^x+e^(-x) gt 2+ x^2 " for all " x ne 0`
Hence both the statements are true statement-2 is a correct explanation of statment-1


Discussion

No Comment Found

Related InterviewSolutions