InterviewSolution
Saved Bookmarks
| 1. |
Straight lines (x)/(a)+(y)/(b)=1, (x)/(b)+(y)/(a)=1,(x)/(a)+(y)/(b)=2 and (x)/(b)+(y)/(a)=2 form a rhombus of area ( in squareunits) |
|
Answer» `(ab)/(|a^(2)-B^(2)|)` `(x)/(a)+(y)/(b)=1""…(i)""(x)/(b)+(y)/(a)=1` `(x)/(a)+(y)/(b)=2""…(iii) ""(x)/(b)+(y)/(a)=2""…(iv)` CLEARLY , (i), (iii) and (ii), (iv) FORM two sets of parallel lines. So, the four lines form a parallelogram. Area of RHOMBUS`=|((2-1)(2-1))/({:((1)/(a),(1)/(b)),((1)/(b),(1)/(a)):})|=|(1)/((1)/(a^(2))-(1)/(b^(2)))|` `implies` Area of the rhombus `=(a^(2)b^(2))/(|b^(2)-a^(2)|)` |
|