

InterviewSolution
Saved Bookmarks
1. |
Sum of the series `sum_(r=1)^n (r^2+1)r!,` isA. `(n+1)!`B. `(n+2)!-1`C. `n(n+1)!`D. none of these |
Answer» We have, `sum_(r=1)^(n)(r^(2)+1)r!` `sum_(r=1)^(n){(r+2)(r+1)-3(r+1)+2}r!` `sum_(r=1)^(n){(r+2)!-(r+1)!}-2sum_(r=1)^(n){(r+1)!-r!}` `=(n+2)!-2!-2{(n +1)!-1}=n(n+1)!` |
|