Saved Bookmarks
| 1. |
Sum the series: 1 + 2.2 + 3.22 + ..... + 100.299(a) 99.2100 (b) 100.2100(c) 99.2100 + 1 (d) 1000.2100 |
|
Answer» (c) 99.2100 +1 1 + 2.2 + 3.22 + 4.23 + ..... + 100.299 is clearly an AGP with A.P. : 1 + 2 + 3 + ..... 100 and G.P. : 1 + 2 + 22 + ..... + 299. Let S = 1 + 2.2 + 3.22 + 4.23 + ..... + 100.299 ∴ 2S = 2 + 2.22 + 3.23 + ..... + 99.299 + 100.2100 ∴ S – 2S = (1 + 2 + 22 + 23 + ..... 299) – 100.2100 ⇒ -S = \(\frac{(2^{100}-1)}{2-1}\) - 100.2100 (∵ Sn = \(\frac{a(r^n-1)}{r-1}\) and this is a G.P. with 100 terms, a = 1, r = 2) = 2100 – 1 – 100.2100 S = 2100 . 100 – 2100 + 1 = 2100 . (100 – 1) + 1 = 99.2100 + 1. |
|