1.

Sum the series: 1 + 2.2 + 3.22 + ..... + 100.299(a) 99.2100 (b) 100.2100(c) 99.2100 + 1 (d) 1000.2100

Answer»

(c) 99.2100 +1 

1 + 2.2 + 3.22 + 4.23 + ..... + 100.299 is 

clearly an AGP with A.P. : 1 + 2 + 3 + ..... 100 

and  G.P. : 1 + 2 + 22 + ..... + 299

Let S = 1 + 2.2 + 3.22 + 4.23 + ..... + 100.299 

∴ 2S = 2 + 2.22 + 3.23 + ..... + 99.299 + 100.2100 

∴ S – 2S = (1 + 2 + 22 + 23 + ..... 299) – 100.2100

⇒ -S = \(\frac{(2^{100}-1)}{2-1}\) - 100.2100

(Sn\(\frac{a(r^n-1)}{r-1}\) and this is a G.P. with 100 terms, a = 1, r = 2)

= 2100 – 1 – 100.2100 

S = 2100 . 100 – 2100 + 1 = 2100 . (100 – 1) + 1 

= 99.2100 + 1.



Discussion

No Comment Found