1.

Suppose A and B be two ono-singular matrices such that `AB= BA^(m), B^(n) = I and A^(p) = I `, where `I` is an identity matrix. If `m = 2 and n = 5 ` then p equals to

Answer» `AB=BA^2`
`B^-1(AB)= B^-1(BA^2)`
`= (B^-1B)A^2`
`= A^2`
`A^2 = B^-1AB`
`A^4= A^2A^2= (B^-1AB)(B^-1AB) = B^-1ABB^-1AB`
`= B^-1A(BB^-1)AB`
`= B^-1A(I)AB`
`=B^-1A^2B`
`=B^-1(B^-1AB)B`
`=B^-2AB^2`
`A^8=A^4A^4= (B^-2AB^2)(B^-2AB^2)`
`= B^-2A^2B^2`
`=B^-2(B^-1AB)B^2`
`= B^-3AB^3`
`A^16= A^8A^8 = B^-3B^3B^-3AB^3`
`= B^-3A^2B^3`
`=B^-3(B^-1AB)B^3`
`= B^-4AB^4`
`A^32= A^16A^16 = B^-4AB^4B^-4AB^4`
`= B^-4A^2B^4`
`= B^-4(B^-1AB)B^4`
`=B^-5AB^5`
as, `B^5 = I `
so, `B^-5 = I`
putting in eqn
`=IAI`
`A^32=A`
multilpying by `A^-1` to both sides
`A^32 = A`
`A^32A^-1 = A*A^-1`
`A^31 = I`


Discussion

No Comment Found

Related InterviewSolutions