

InterviewSolution
Saved Bookmarks
1. |
Suppose A and B be two ono-singular matrices such that `AB= BA^(m), B^(n) = I and A^(p) = I `, where `I` is an identity matrix. The relation between m, n and p, isA. `p = mn^(2)`B. `p=m^(n)-1`C. `p=n^(m) - 1`D. `p = m^(n-1)` |
Answer» Correct Answer - B `because AB = BA^(m) ` ` rArr B = A^(-1) BA^(m)` `therefore B^(n) = underset("n times")(underbrace((A^(-1) BA^(m))(A^(-1)BA^(m))... (A^(-1) BA^(m))))` `=A^(-1) underset("n times")(underbrace(BA^(m-1)BA^(m-1)... BA^(m-1)BA^(m-1)))A` ...(i) Given, ` AB = BA^(m)` ` rArr A AB = ABA^(m) = BA^(2m) rArr A A AB = BA^(3m)` Similarly, `A^(x) B = BA^(mx) AA m in N` From Eq. (i) we get `B^(n)=A^(-1) BA^(m-1) underset("(n-1) times")(underbrace(BA^(m-1)BA^(m-1)... BA^(m-1)BA^(m-1)))A` `=A^(-1) B(A^(m-1) B)A^(m-1) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A` `=A^(-1) BBA^((m-1)m) A^(m-1) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A` `=A^(-1) B^(2)A^((m^(2)-1)) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A` `..." " ..." "... " "... ` `=A^(-1) B^(m) (A) ^(m^(n)-1)A` `I = A^(-1) I A^(m^(n)-1) A [because B^(n) = I]` `I = A^(-1) A^(m^(n)-1) A= A^(-1) A^(m^(n))` `rArr I = A^(m^(n)-1)` `therefore p= m^(n)-1 " "...(ii) [because A^(p) = I]` From Eq. (ii), we get `p = m^(n) - 1` |
|