1.

T is a point on the tangent to a parabola `y^2= 4ax` at its point `P. TL and TN` are the perpendiculars on the focal radius SP and the directrix of the parabola respectively. Then (A)SL=2(TN) (B) 3(SL)=2(TN) (C) SL=(TN) (D) 2(SL)=3(TN)

Answer» `y^2=4ax`
Tangent at `P:x+at^2`
Let`T(x_1,y_1)` lies on tangent
`ty_1=x_1+at^2`
`m_(SP)=(2at-0)/(at^2-a)-(2t)/(t^2-1)`
`m_(sp)*m_(tl)=-1`
`(2t)/(t^2-1)*m_(tl)=-1`
`m_(tl)=(1-t^2)/(2t)`
Equation of TL
`y-y_1=(1-t^2)/(2t)*(x-x_1)`
SL is perpendicular on line TC
`D_1=SL=|((-2ty_1+a(t^2-1)-x_1(t^2-1))/(sqrt(4t^2+(t^2-1)^2)))|`
solving this
`SL=x_1+a`
perpendicular distance
`D_2=TN=(x_1+a)/(sqrt(1^2+0^2))=x_1+a`
`SL+TN+x_1+a`


Discussion

No Comment Found

Related InterviewSolutions