InterviewSolution
Saved Bookmarks
| 1. |
`tan^(-1)x` |
|
Answer» `int tan^(-1)xdx` `=int tan^(-1)x.1dx` `=tan^(-1)x. int 1dx - int{(d)/(dx)tan%(-1)x. int 1dx}dx` ( `tan^(-1) x` को प्रथम लेने पर ) `=x tan^(-1)x-int(x)/(1+x^(2))dx" माना "1+x^(2)=t` `=x tan^(-1)x-int(dt)/(2t)" "therefore " "2x=(dt)/(dx)` `=x tan^(-1)x-(1)/(2)logt+C" "rArr" "xdx=(dt)/(2)` `=x tan^(-1)x-(1)/(2)log(1+x^(2))+C` |
|