InterviewSolution
Saved Bookmarks
| 1. |
tanα = a/b then the value of Sinα + Cosα is:1. \(\sqrt{a^2 + b^2} \over {a + b}\)2. \({a + b} \over \sqrt{a^2 + b^2}\)3. \(\sqrt{a^2 - b^2} \over {a + b}\)4. \({a + b} \over \sqrt{a^2 - b^2}\) |
|
Answer» Correct Answer - Option 2 : \({a + b} \over \sqrt{a^2 + b^2}\) Given: tanα = a/b Concept Used: tanθ = Perpendicular/Base Sinθ = Perpendicular/Hypotenuse Cosθ = Base/Hypotenuse Base2 + Perpendicular2 = Hypotenuse2 Calculation: tanα = a/b and tanα = Perpendicular/Base Comparing above two get, Perpendicular = a and Base = b Hypotenuse = √a2 + b2 Sinα = Perpendicular/Hypotenuse ⇒ Sinθ = a/√a2 + b2 Cosα = Base/Hypotenuse ⇒ Cosα = b/√a2 + b2 Sinα + Cosα = (a/√a2 + b2) + (b/√a2 + b2) ⇒ Sinα + Cosα = \({a + b} \over \sqrt{a^2 + b^2}\) ∴ Sinα + Cosα = \({a + b} \over \sqrt{a^2 + b^2}\) |
|