1.

The angular frequency of a fan of moment of inertia 0.1kg m^(2) is increased from 30 rpm to 60 rpm when a torque of 0.03 Nm acts on it. Find the number revolutions made by the fan while the angular frequency is increased from 30 rpm to 60 rpm.

Answer» <html><body><p></p><a href="https://interviewquestions.tuteehub.com/tag/solution-25781" style="font-weight:bold;" target="_blank" title="Click to know more about SOLUTION">SOLUTION</a> :Work done `=(1)/(2)I(omega_(<a href="https://interviewquestions.tuteehub.com/tag/f-455800" style="font-weight:bold;" target="_blank" title="Click to know more about F">F</a>)^(2)-omega_(i)^(2))` `tau theta=(1)/(2)I(omega_(f)^(2)-omega_(i)^(2))` <br/> `theta=(1)/(2)((I)/(tau))(omega_(f)^(2)-omega_(i)^(2))=(0.1)/(2xx0.03)((2pi)^(2)-pi^(2))=5pi^(2)` <br/> The number of revolutions, `(theta)/(2pi)=(5pi^(2))/(2pi)=(5pi)/(2)=7.855`<a href="https://interviewquestions.tuteehub.com/tag/rev-1188006" style="font-weight:bold;" target="_blank" title="Click to know more about REV">REV</a></body></html>


Discussion

No Comment Found