InterviewSolution
Saved Bookmarks
| 1. |
The area bounded by the x-axis, the curve `y=f(x),`and the lines `x=1,x=b`is equal to `sqrt(b^2+1)-sqrt(2)`for all `b >1,`then `f(x)`is`sqrt(x-1)`(b) `sqrt(x+1)``sqrt(x^2+1)`(d) `x/(sqrt(1+x^2))`A. `sqrt(x-1)`B. `sqrt(x+1)`C. `sqrt(x^(2)-1)`D. `x//sqrt(x^(2)+1)` |
|
Answer» Correct Answer - d We have, `underset(1)overset(b)(int)f(x)dx=sqrt(b^(2)+1)-sqrt2` Differentiating w.r. to b, we get `f(b)=(b)/(sqrt(b^(2)+1))impliesf(x)=(x)/(x^(2)+1)` |
|