1.

The area bounded by the x-axis, the curve `y=f(x),`and the lines `x=1,x=b`is equal to `sqrt(b^2+1)-sqrt(2)`for all `b >1,`then `f(x)`is`sqrt(x-1)`(b) `sqrt(x+1)``sqrt(x^2+1)`(d) `x/(sqrt(1+x^2))`A. `sqrt(x-1)`B. `sqrt(x+1)`C. `sqrt(x^(2)-1)`D. `x//sqrt(x^(2)+1)`

Answer» Correct Answer - d
We have,
`underset(1)overset(b)(int)f(x)dx=sqrt(b^(2)+1)-sqrt2`
Differentiating w.r. to b, we get
`f(b)=(b)/(sqrt(b^(2)+1))impliesf(x)=(x)/(x^(2)+1)`


Discussion

No Comment Found