1.

The areas of three adjacent faces of a cuboid are x, y, and z. If the volume is V, prove that V2 = xyz.

Answer»

Let us consider,

Areas of three faces of cuboid as x,y,z

So, Let length of cuboid be = l

Breadth of cuboid be = b

Height of cuboid be = h

Let, x = l×b

y = b×h

z = h×l

Else we can write as

xyz = l2 b2 h2….. (i)

If ‘V’ is volume of cuboid = V = lbh

V2 = l2 b2 h2 = xyz …… from (i)

∴ V2 = xyz

Hence proved.



Discussion

No Comment Found