

InterviewSolution
Saved Bookmarks
1. |
The areas of two similar triangles are 16 cm2 and 25 cm2 respectively, then the ratio of their corresponding sides is ………(A) 5 : 4 (B) 4 : 5 (C) 16 : 25 (D) 25 : 16 |
Answer» Correct option is (B) 4 : 5 Let similar triangles are \(\triangle ABC\;\&\;\triangle DEF\) Also let \(ar(\triangle ABC)=16\,cm^2\;\&\) \(ar(\triangle DEF)=25\,cm^2\) \(\because\) \(\frac{ar(\triangle ABC)}{ar(\triangle DEF)}=(\frac{AB}{DE})^2\) \(\therefore\) \((\frac{AB}{DE})^2=\frac{16}{25}\) \(\Rightarrow\) \(\frac{AB}{DE}=\sqrt{\frac{16}{25}}=\frac45\) \(\therefore AB:DE=4:5\) Hence, the ratio of corresponding sides of given triangle is 4:5. Correct option is: (B) 4 : 5 |
|