1.

The average of twelve numbers is 39. The average of the last five numbers is 35, and that of the first four numbers is 40. The fifth number is 6 less than the sixth number and 5 more than the seventh number. The average of the sixth and seventh numbers is:1. 47.52. 503. 44.54. 39

Answer» Correct Answer - Option 3 : 44.5

Given:

Average of twelve numbers = 39

Average of last five numbers = 35

Average of first four numbers = 40

Fifth number = sixth number - 6

Fifth number = seventh number + 5

Formula used:

Average = (Sum of values)/(Number of values)

Calculations:

Let twelve numbers be x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12.

x5 = x6 - 6      ----(i)

x5 = x7 + 5      ----(ii)

Average of first four numbers,

(x1 + x2 + x3 + x4)/4 = 40

⇒ (x1 + x2 + x3 + x4) = 160

Average of last five numbers,

(x8 + x9 + x10 + x11 + x12)/5 = 35

⇒ (x8 + x9 + x10 + x11 + x12) = 175

Average of twelve numbers,

(x1 + x2 + x3 + x+ x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12)/12 = 39

⇒ (x1 + x2 + x3 + x+ ​x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12) = 468

⇒ (160 + ​x5 + x6 + x7 + 175) = 468

⇒ ​x5 + x6 + x7 = 468 - 160 - 175

⇒ ​x5 + x6 + x7 = 133      ----(iii)

Putting value of x5 from equation (i),

⇒ x6 - 6 + x6 + x7 = 133

⇒ 2x6 + x7 = 139

⇒ x7 = 139 - 2x6      ----(iv)

Putting value of x5 from equation (ii),

x7 + 5 + x6 + x7 = 133

⇒ 2x7 + x6 = 128

⇒ 2(139 - 2x6) + x6 = 128

⇒ 278 - 4x6 + x6 = 128

⇒ 3x6 = 150

⇒ x6 = 50

Putting the value of x6 in equation (iv),

x7 = 139 - 2x6

⇒ x7 = 139 - 2(50)

⇒ x7 = 139 - 100

⇒ x7 = 39

Average of x6 and x7 = (50 + 39)/2

⇒ 89/2

⇒ 44.5

∴  The average of the sixth and seventh numbers is 44.5



Discussion

No Comment Found

Related InterviewSolutions