InterviewSolution
Saved Bookmarks
| 1. |
The circle `x^2+y^2-8x=0` and hyperbola `x^2/9-y^2/4=1` intersect at the points A and B Equation of the circle with AB as its diameter isA. `x^(2)+y^(2)-12x+24=0`B. `x^(2)+y^(2)+12x+24=0`C. `x^(2)+y^(2)+24x-12=0`D. `x^(2)+y^(2)-24x-12=0` |
|
Answer» The coordinates of any point on the given hyperbola are `(3sectheta,2tantheta)`. If lies on the circle `x^(2)+y^(2)-8x=0`, then `9sec^(2)theta+4tan^(2)theta-24sectheta=0` `implies13sec^(2)theta-24sectheta-4=0` `implies(13sectheta+2)(sectheta-2)=0` `impliessectheta=2`, `-(2)/(13)impliessectheta=2` `:.tantheta=+-sqrt(3)` So, the coordinates of `A` and `B` are `(6,2sqrt(3))` and `(6,-2sqrt(3))`. The equation of the circle with `AB` as its diameter is `(x-6)^(2)+(y^(2)+12)=0` or, `x^(2)+y^(2)-12x+24=0` |
|