InterviewSolution
Saved Bookmarks
| 1. |
The combined equation of the asymptotes of the hyperbola `2x^2 + 5xy + 2y^2 + 4x + 5y = 0` is -A. `2x^(2)+5xy+2y^(2)+4x+5y+2=0`B. `2x^(2)+5xy+2y^(2)+4x+5y-2=0`C. `2x^(2)+5xy+2y^(2)=0`D. none of these |
|
Answer» Let the equation of asymptotes be `2x^(2)+5xy+2y^(2)+4x+5y+lambda=0`……`(i)` This equation represents a pair of straight lines. Therefore, `abc+2fgh-af^(2)-bg^(2)-ch^(2)=0` Here, `a=2`, `b=2`, `h=5//2`, `g=2`, `f=5//2` and `c=lambda` `:.4lambda+25-(25)/(2)-8-(25)/(4)lambda=0implies-(9lambda)/(4)+(9)/(2)=0implieslambda=2` Putting the value of `lambda` in `(i)`, we get `2x^(2)+5xy+2y^(2)+4x+5y+2=0` This is the equation of the asymptotes. |
|