1.

The component of vector `A=a_(x)hati+a_(y)hatj+a_(z)hatk` and the directioin of `hati-hatj` isA. `a_(x)-a_(y)+a_(z)`B. `a_(x)-a_(y)`C. `(a_(x)-a_(y))//sqrt(2)`D. `(a_(x)+a_(y)+a_(z))`

Answer» (c) Let `B=hati-hatj`
Then component of vector `A` along `B=(A.B)/(|B|)`
`=((a_(x)hati+a_(y)hatj+a_(z)hatk).(hati-hatj))/(|hati-hatj|)=(a_(x)-a_(y))/(sqrt(2))`


Discussion

No Comment Found