InterviewSolution
Saved Bookmarks
| 1. |
The depth x to which a bullet penetrates a human body depends on (i) coeffeicint of elasticity, `eta` and (ii) KE `(E_k)` of the bullet, By the method of dimensions, show that `x prop ((E_k)/(eta))^(1//3)` |
|
Answer» Let `x prop E_k^a eta^b,` where, a, b are the dimensions `x = K E_k^a eta^b ….(i)` where K is dimansionless constant fo proportionality. Writing the dimensions in (i), we get `[M^0L^1 T^0] = (ML^2 T^(-2))^a (ML^(-1) T^(-2))^b` `=M^(a +b) L^(2a -b) T^(-2a -2b)` Applying the principle of homogeneity of dimensions, we get ` a +b =0 .....(ii)` `2a - b =1 ....(iii)` `-2a -2b =0 ....(iv)` Add (ii) and (iii) : `3a =1, a = 1//3` Form (ii), `b =-a - (1)/(3)`. From (i),` x =K((E_k)/(eta))^(1//3)` Henc, `x prop((E_k)/(eta))^(1//3)` |
|