1.

The diagonals of a trapezium ABCD with AB || DC, intersect each other at the point O. If AB = 2 CD, then the ratio of areas of triangles AOB and COD is(A) 4 : 1 (B) 1 : 4 (C) 3 : 4 (D) 4 : 3

Answer»

Correct option is (A) 4 : 1

In triangles \(\triangle AOB\;and\;\triangle COD,\)

\(\angle OAB=\angle OCD\)        (Alternative interior angles as AB || DC)

\(\angle OBA=\angle ODC\)         (Alternative interior angles as AB || DC)

\(\angle AOB=\angle COD\)         (Vertically opposite angles)

\(\therefore\) \(\triangle AOB\sim\triangle COD\)    (By AAA similarity rule)

\(\therefore\) \(\frac{ar(\triangle AOB)}{ar(\triangle COD)}=(\frac{AB}{CD})^2\)    (By properties of similar triangle)

\(=(\frac21)^2=\frac41\)                 \((\because AB=2CD\Rightarrow\frac{AB}{CD}=\frac21)\)

\(\therefore\) \(ar(\triangle AOB):ar(\triangle COD)=4:1\)

Correct option is: (A) 4 : 1



Discussion

No Comment Found

Related InterviewSolutions