InterviewSolution
Saved Bookmarks
| 1. |
The differential equation `(dy)/(dx)+x sin 2y=x^(3)cos^(2)y` when transformed to linear form becomesA. `(dz)/(dx)+(z)/(x^(2))=x`B. `(dz)/(dx)+zx=(x^(3))/(2)`C. `(dz)/(dx)+2xz=x^(3)`D. `(dz)/(dx)=(z)/(x)=x^(2)` |
|
Answer» Correct Answer - C We have, `(dy)/(dx)+x sin 2y=x^(3)cos^(2)y` `rArr" "sin^(2)y.(dy)/(dx)+(2 tan y)x=x^(3)` Putting `tany=2 and sec^(2)y(dy)/(dx)=(dz)/(dx)`, we get `(dz)/(dx)+2xz=x^(3)` |
|