1.

The differential equation `(dy)/(dx)+x sin 2y=x^(3)cos^(2)y` when transformed to linear form becomesA. `(dz)/(dx)+(z)/(x^(2))=x`B. `(dz)/(dx)+zx=(x^(3))/(2)`C. `(dz)/(dx)+2xz=x^(3)`D. `(dz)/(dx)=(z)/(x)=x^(2)`

Answer» Correct Answer - C
We have,
`(dy)/(dx)+x sin 2y=x^(3)cos^(2)y`
`rArr" "sin^(2)y.(dy)/(dx)+(2 tan y)x=x^(3)`
Putting `tany=2 and sec^(2)y(dy)/(dx)=(dz)/(dx)`, we get
`(dz)/(dx)+2xz=x^(3)`


Discussion

No Comment Found

Related InterviewSolutions