InterviewSolution
Saved Bookmarks
| 1. |
The differential equation obtained by eliminating a and b from `y = ae^(bx)` isA. `y(d^(2)y)/(dx^(2))+(dy)/(dx)=0`B. ` y (d^(2)y)/(dx^(2))-(dy)/(dx)=0`C. `y(d^(2)y)/(dx^(2))-((dy)/(dx))^(2)=0`D. ` y (d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=0` |
|
Answer» Correct Answer - c The given equation is ` y=ae^(bx)" "` …(i) On differentiating w.r.t. x, we get `(dy)/(dx)= abe^(bx)` Again , on differentiating w.r.t x, we get ` (d^(2)y)/(dx^(2)) = ab^(2)e^(bx) rArr ae^(bx) (d^(2)y)/(dx^(2)) = a^(2)b^(2)e^(2bx)` ` rArr y (d^(2)y)/(dx^(2)) = (dy/(dx))^(2) rArr y (d^(2)y)/(dx^(2)) - (dy/dx)^(2)=0` which is required differential equation |
|