InterviewSolution
Saved Bookmarks
| 1. |
The differential equation representing the family of curves ` y^(2) = 2c (x +c^(2//3))` , where c is a positive parameter , is ofA. order 3, degree 3B. order2,degree4C. order 1,degree 5D. order 5,degree 1 |
|
Answer» Correct Answer - c ` y^(2) = 2c (x+c^(2//3))` On differentiating both sides , we get op ` rArr 2y (dy)/(dx) = 2c rArr c = y (dy)/(dx)` ` :. y^(2) = 2y (dy)/(dx) [ x + (y (dy)/dx)^(2//3)]` ` rArr (y/(2(dy)/dx)-x) = (y (dy)/(dx))^(2//3)` ` rArr (y - 2x (dy)/(dx))^(3) = (2 (dy)/dx)^(3) (y (dy)/(dx))^(2)` ` rArr (y - 2x (dy)/(dx))^(3) = 8y^(2)(dy/dx)^(5)` Here , order = 1, degree = 5 |
|