1.

The displacement of a particle represented by the equation y= 3 cos((pi)/(4)-2 omega t). The motion of the particle is

Answer»

SIMPLE harmonic with period `(2pi)/(omega)`
simple harmonic with period `(pi)/(omega)`
periodic but not simple harmonic
non-periodic

Solution :The displacement of motion of particle
`y= 3 cos ((pi)/(4)- 2omega t)`
`therefore v= (d)/(DT)[3 cos ((pi)/(4)- 2omega t)]`
`= 3(-2omega) [-sin((pi)/(4)- 2omega t)]`
`therefore v = 6 omega sin ((pi)/(4)-2omega t)`
Acceleration, `a= (dv)/(dt)= (d)/(dt) [6OMEGA sin ((pi)/(4)-2omega t)]`
`therefore a = 6omega xx (-2omega)cos((pi)/(4)- 2omega t)`
`= -12omega^(2) cos ((pi)/(4)- 2omega t)`
`= -4omega^(2) [3cos ((pi)/(4)- 2omega t)]`
`therefore a= -4omega^(2)y"""........"(1)`
`therefore a propto -y`
This is CONDITION of simple harmonic motion, the motion is SHM and
`omega.= 2 omega""[therefore " Comparing equation (1) with "a= -(omega.)^(2)y]`
`therefore (2pi)/(T.)= 2omega`
`therefore T.= (2pi)/(2omega)= (pi)/(omega)`


Discussion

No Comment Found