1.

The distance of the point (1, 3) from the line `2x+3y=6`, measured parallel to the line `4x+y=4`, isA. `5/sqrt(13)` unitsB. `3/sqrt(17)` unitC. `sqrt(17)` unitsD. `sqrt(17)/2` units

Answer» Correct Answer - D
The line `4x+y=4` can be written as `y=-4x+4`.
So, slop is -4.
The line parallel to `4x+y=4` will have slope `-4` only. Given point `=(1, 3)`
Equation of line passing through (1, 3) and slope -4 is `y-3=-4(x-1)`
`implies y-3=-4x+4 implies 4x+y=7`.
Solving the two equations, we get
`2x+3y=6 implies 4x+6y=12`
`{:(4x+y=7),(cancel((-))(-) (-)),(bar(5y=5implies y=1)):}`
`2x+3y=6 implies 2x+3(1)=6`
`implies 2x=3 implies x=3/2`.
Distance between the points (1, 3) and `(3/2, 1)` is
`sqrt((3/2-1)^(2)+(1-3)^(2))=sqrt((1/2)^(2)+(-2)^(2))=sqrt(1/4+4)=sqrt(17/4)=sqrt(17)/2`.


Discussion

No Comment Found

Related InterviewSolutions