InterviewSolution
Saved Bookmarks
| 1. |
The domain of definiton of the function `f(x)=(1)/(sqrt(x^(12)-x^(9)+x^(4)-x+1))` , isA. `(-oo,-1)`B. `(1,oo)`C. `(-1,1)`D. R |
|
Answer» Correct Answer - D f(x) assumes real values , if `x^(12)-x^(9)+x^(4)-x+1 gt0` `implies (x^(12)+x^(4))-(x^(9)+x)+1) gt 0` `implies x^(4)(x^(8)+1)-x(x^(8)+1)+1 gt 0` `implies x(x^(8)+1) (x^(3)-1)+1 gt 0` Clearly , it is true for all ` x ge 1 or , x le 0`. For ` 0 lt x lt 1`, we have `x^(4) gt x^(8)` `implies x^(4)+1 gt x^(8)+1` `implies x^(4)+1 gt x(x^(8)+1)` `implies -x(x^(8)+1)+x^(4)+1 gt 0` `implies x^(12)-x(x^(8)+1)+x^(4)1 gt 0` Thus , `x^(12)-x^(9)+x^(4)-x+1 gt 0` for all ` x in R. ` Hence domain of f(x) is R. |
|