InterviewSolution
Saved Bookmarks
| 1. |
The domain of definiton of the function ` f(x) = cot^(-1) {(x)/(sqrt(x^(2)-[x^(2)]))}` isA. `R - {pm sqrtn : n in N }`B. `R - { pm sqrtn : n ge 0, ne Z)`C. `R`D. `R-{0}` |
|
Answer» Correct Answer - B We know that `cos^(-1) x` is defined for all `x in R` . Therefore, `cot^(-1){(x)/(sqrt(x^(2) -[x]))}` is defined, if `x^(2) -[x^(2)] gt0` `rArr x^(2) gt [x^(2)]` `rArr x^(2) in R and x^(2) ne 0,1,2,3,....` `rArr x ne R and x ne p, sqrt(n),n=0,1,2,.....` `rArr x in R- {pm sqrt(n) : ngt 0, n in z}` Hence, domina `f = R -{pm sqrt(n) :n gt 0, n in Z}` |
|