InterviewSolution
Saved Bookmarks
| 1. |
The equation of tangent to the curve `y=x^(2)+4x+1` at (-1, -2) isA. `2x-y=0`B. `2x+y-5=0`C. `2x-y-1=0`D. `x+y-1=0` |
|
Answer» The given equation of the curve is, `y=x^(2)+4x+1.` On differentiating w.r.t.x, we get `(dy)/(dx)=2x+4` `therefore ((dy)/(dx))_(x=-1)=2(-1)+4=-2+4=2.` The equation of the tangent at `(-1,2)` is, `y-(-2)=2(x-(1))` `y+2=2(x+1)` ` y+2=2x+2` `2x-y=0` Hence, the correct answer from the given alternative is (a). |
|