1.

The equation of tangent to the curve `y=x^(2)+4x+1` at (-1, -2) isA. `2x-y=0`B. `2x+y-5=0`C. `2x-y-1=0`D. `x+y-1=0`

Answer» The given equation of the curve is,
`y=x^(2)+4x+1.`
On differentiating w.r.t.x, we get
`(dy)/(dx)=2x+4`
`therefore ((dy)/(dx))_(x=-1)=2(-1)+4=-2+4=2.`
The equation of the tangent at `(-1,2)` is,
`y-(-2)=2(x-(1))`
`y+2=2(x+1)`
` y+2=2x+2`
`2x-y=0`
Hence, the correct answer from the given alternative is (a).


Discussion

No Comment Found