1.

The equation of tangent to the curve y = x2 + 4x + 1 at ( - 1, –2) is(A) 2x – y = 0 (B) 2x + y - 5 = 0 (C) 2x – y – 1 = 0 (D) x + y - 1 = 0

Answer»

(A) 2x - y = 0

Equation of the curve is y = x2 + 4x + 1 

Differentiating w.r.t. x, we get

\(\frac{dy}{dx} = 2x + 4\)

∴ Slope of tangent at (-1, -2) is

\((\frac{dy}{dx})_{(-1,-2)}\) = 2(-1) + 4 = -2 + 4 = 2

Equation of tangent is y - y1\((\frac{dy}{dx})_{(x_1,y_1)}\) (x-x1)

Here, (x1, y1) ≡ (-1, -2)

∴ [ y - (-2)] = 2[x - (-1)] 

∴ y + 2 = 2(x + 1) = 2x + 2

∴ 2x - y = 0



Discussion

No Comment Found

Related InterviewSolutions