1.

The equation of the circle with centre (4, 3) and touching circle x2 + y2 = 1 is(A)  x2 + y2 - 8x - 6y + 11 = 0(B)  x2 + y2 - 8x - 6y + 9 = 0 (C)  x2 + y2 - 8x - 6y - 9 = 0 (D)  x2 + y2 - 8x - 6y - 11 = 0 

Answer»

Correct option (b,d)

Explanation :

Since (3, 4) lies outside the circle x2 + y2 = 1, one circle has the external contact with x2 + y2 = 1 and the other circle has the internal contact. O = (0, 0) and r1 = 1. Let A = (4, 3) and r2 be the radius of the required circle OA = 5.

Case 1: r2 = 5 -   1 = 4 (i.e. external contact). Hence, the required circle is

(x - 4)2 + (y - 3)2 = 16

⇒ x2 + y2 - 8x -6y + 9 = 0

Case 2:  r2 = 5 + 1 = 6 (i.e. internal contact). Hence, the required circle is

(x - 4)2 + (y - 3)2 = 36

⇒ x2 + y2 - 8x - 6y -11 = 0



Discussion

No Comment Found

Related InterviewSolutions