1.

The equation of the hyperbola with center at the origin, length  of the transverse axis is 6 and one focus at (0, 4) is ?1. \(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\)2. \(\rm \frac {y^2} 9 - \frac {x^2} 7 = 1\)3. \(\rm \frac {y^2} 9 + \frac {x^2} 9 = 1\)4. \(\rm \frac {y^2} 7 + \frac {x^2} 9 = 1\)

Answer» Correct Answer - Option 1 : \(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\)

Concept:

The equation of the hyperbola is \(\rm \dfrac {y^2}{b^2}- \dfrac{x^2}{a^2} = 1\) with the foci (0 , ± ae

Length of the transverse axis =  2a

 

Calculations: 

Since the coordinates of the one focus at (0, 4) = (0 , ± ae) , it is a case of vertical hyperbola

⇒ ae = 4

It is a case of vertical hyperbola

⇒ The equation of hyperbola is \(\rm \dfrac {y^2}{b^2}- \dfrac{x^2}{a^2} = 1\) ....(1) 

 Length of the transverse axis = 6

⇒ 2a=6

⇒  a = 3

\(\rm \text {Also}\;\;a^2e^2 = a ^ 2+ b^2\)

\(\rm 4^2 =3 ^ 2+ b^2\)

\(\rm b^2 = 7\)

Equation (1) becomes 

\(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\)

Hence, The equation of the hyperbola with center at the origin, length  of the transverse axis is 6 and one focus at (0, 4) is \(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\) 



Discussion

No Comment Found

Related InterviewSolutions