Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

Let L be the point (t, 2) and M be a point on the y-axis such that the slope of LM is −t. Then, the locus of the midpoint of LM is a parabola whose latus rectum is(a)  2(b)   1/2(c)   4(d)  1/4

Answer»

Correct option (b)  1/2

Explanation :

Let M = (0, k) so that the slope of LM is

2 - k/t - 0 = -t

⇒ 2 - k = -t2   ....(1)

Let (x, y) be the midpoint of LM. Therefore

x = t/2 and y = 2 + k/2

Hence, from Eq. (1), we have

2y = 2 + k = 2 + (2 + t2)

= 4 + t2

= 4 + 4x2

y = 2 + 2x2

x2 = 1/2(y - 2)

Hence, the latus rectum is 1/2.

2.

In general, three normals can be drawn through a point in the plane of a parabola to the curve.

Answer»

Let P(h, k) be a point in the plane of y2 = 4ax. It is known that the normal to parabola at (at2, 2at) is tx + y = 2at + at3. This normal passes through P(h,k

th + k = 2at + 2at + at3 

at3 + (2a - h)t - k = 0   .....(1)

Equation (1) is a cubic equation in t and hence, in general, it has three roots and hence, there are three points on the curve at which normals drawn to the parabola are concurrent at P(h, k). 

3.

Show that the chords of contacts of points on the line 2x - 3y + 4 = 0 with respect to the parabola y2 = 4ax pass through a fixed point.

Answer»

Let P(x1, y1) be a point on the line 2x - 3y + 4 = 0. Therefore

2x1 - 3y1 + 4 = 0 ....(1)

Now, the chord of contact of (x1, y1) with respect to y2 + 4ax is

yy1 - 2a(x + x1) = 0 ....(2)

From Eqs. (1) and (2), we get

yy1 - 2ax - a(3y1 - 4) = 0

y1(y - 3a) 2a(x - 2) = 0  ...(3)

Eq. (3) represents the lines passing through the fixed point which is the intersection of the lines x = 2 and y = 3a. Hence, the fixed point is (2, 3a).

4.

Find the coordinates of the point whose chord of contact with respect to the parabola y2 + 4x is 2x - 7y + 2 = 0

Answer»

Suppose (x1, y1) is the point whose chord of contact with respect to y2  = 4x is

2x - 7y + 2 = 0  ...(1)

However, the chord of contact of (x1, y1) is

S ≡ yy1 - 2(x + x1) = 0

Therefore, from Eqs. (1) and (2), we get

-2/2 = y1/-7 = -2x1/2

Hence, x1 = 1 and y1 = 7. Thus, the required point is (1, 7).

5.

If P is a point on the line x + 4a = 0 and QR is the chord of contact of P with respect to y2 = 4ax, then ∠QOR (where O is the vertex) is equal to (A)  45°(B)  60°(C)  30°(D)  90°

Answer»

Correct option  (D)  90°

Explanation 

 Let P be (x1, y1) so that

x1 + 4a = 0 .....(1)

Chord of contact of P(x1,y1) is

yy1 - 2a(x + x1) = 0

⇒ yy1 - 2ax + 8a2 = 0

[∴ x1 = -4a  from Eq.(1)]

⇒ yy1 - 2a(x + x1) = 0

⇒ yy1 -2ax + 8a2 = 0

⇒ 2ax - y1y/8a2 = 1

Hence, the combined equation of the pair of lines OQ and OR is

y2 - 4ax(2ax - y1y/8a2)

In this equation, the coefficient of x2 + the coefficient of y2 = −1 + 1 = 0. Hence ∠QOR  = 90°

6.

Locus of the point of intersection of the tangents to the parabola y2 = 4ax which include 60° angle is(A)   y2 = 4ax + 3(x + a)2(B)   y2 - 4ax = 2(x + a)2(C)   y2 - 4ax = (x + a)2(D)   y2 - 4ax = 3(x + a)3

Answer»

Correct option (A)  y2 = 4ax + 3(x+ a)2

Explanation :

According to Problem 28 of the section ‘Subjective Problems’, the locus of the point of intersection of the tangents to the parabola y2 = 4ax which include angle α is

cot2 α(y2 - 4ax) = (x +  a)2

Now, substituting  α = 60° the required locus is

1/3(y - 4ax) = (x + a)2

y2 - 4ax = 3(x + a)2

7.

Find the distance between foci of the ellipse \(\rm {x^2\over100}+{y^2\over64} = 1\).1. 22. 33. 44. 12

Answer» Correct Answer - Option 4 : 12

Concept:

The standard equation of an ellipse:

\(\rm {x^2\over a^2}+{y^2\over b^2} = 1\)

Where 2a and 2b are the length of the major axis and minor axis respectively and center (0, 0)

The eccentricity = \(\rm \sqrt{(a^2-b^2)}\over a\)

Length of latus recta = \(\rm 2b^2 \over a\)

Distance from center to focus = \(\rm \sqrt{a^2-b^2}\)

Calculation:

Given ellipse \(\rm {x^2\over100}+{y^2\over64} = 1\)

The eccentricity (e)

⇒ e = \(\rm \sqrt{100-64}\over 10\)

⇒ e = \(\rm \sqrt{36}\over 10\)

⇒ e = 0.6

Now distance between foci = 2ae

= 2 × 10 × 0.6

∴ Distance between foci = 12

8.

Passage: For the parabola y2 = 4ax, the vertex is (0, 0), the focus is (a, 0) and the directrix is x + a = 0. Answer the following three questions.(i) The vertex of the parabola (y - 1)2 = 2(x - 1) is (A)  (1,0)(B)  (2,0) (C)  (1,1)(D)  (0,1)(ii)  Focus of the parabola y2 = 4(x - 1) is(A)  (1, 0)(B)  (2, 0)(C)  (1, 1)(D)  (2, 2)(iii)  The directrix of the parabola (y - 2)2 = 4(x - 1)(A)   x = 1(B)   x = -1(C)   x = 2 (D)  x =  0

Answer»

Correct option  (i)(c)(ii)(b)(iii)(d)

Explanation :

(i) The parabola is

Y2 = 4(1/2)(x)

where X = x - 1 and Y = y - 1. Therefore, the vertex is

(X = 0, Y = 0) = (x - 1 = 0, y -  1 =  0) = (1, 1)

 (ii)  y2 = 4(x -1) is Y2 = 4X where X = x - 1 and Y = y and a - 1. The focus is

(X = 1, Y = 0) =(x - 1 = 1,y = 0) = (2,0)

 (iii)  (y - 2)2 = 4(x - 1)  ⇒ Y2 = 4X where X = x - 1 and Y = y − 2. The directrix equation is

X = -a = -1

⇒ x - 1 = -1

⇒ x = 0

9.

Equation of the normal at t istx + y = 2at + at3

Answer»

Tangent at (at2, 2at) is ty = x + at2 . Thus the slope of the tangent at t is 1/t. Hence, the equation of the normal at (at2, 2at) is

 y - 2at = -t(x - at2)

⇒ tx + y = 2at + at3

10.

Find the director circle of the parabola x2 + 2y = 4x - 3 .

Answer»

The given equation is written as

(x - 2)2 = 1 - 2y = -2(y - 1/2)

Let X = x - 2 and Y = y (1/2). Substituting in above equation we get

X2 = -4aY

where a = 1/2.

The directrix equation Y = a or y − 1 = 0. Therefore, the director circle is the directrix y − 1 = 0.

11.

Determine the coordinates of the focus, the equation of the directrix and the length of the latus rectum of the parabolay2 = (8/3)x.

Answer»

n: The equation of the curve is

y2 = (8/3)x = 4(2/3)x

so that a = 2/3. Hence, S = (a,0) = (2/3,0) is the focus, 

x + 2/3 = 0 or 3x + 2 = 0

is the equation of the directrix and 4/83 a  is the length of the latus rectum.

12.

If L ≡ x + y - 1 = 0 is a line and S ≡ y - x + x2 = 0 is a parabola, then which of the following is true?(A)   L = 0 and S = 0 do not have common points(B)   L = 0 cuts S = 0 in two distinct points(C)   L = 0 touches the parabola S = 0(D)   L = 0 is the directrix of the parabola S = 0 

Answer»

Correct option (C) L = 0 touches the parabola S = 0

Explanation :

Substituting y = 1 x in the equation of the parabola, we get

1 - x - x + x2 = 0

⇒ x2 - 2x + 1 = 0

⇒ (x - 1)2 = 0

Hence, L = 0 touches the parabola at (1, 1).

13.

If the line lx + my + n = 0 touches the parabola y2 = 4ax, then(a)   In = am(b)  In2 = am2(c)  l2n = am2(d)   In = am2

Answer»

Correct option  (D) ln = am2 

Explanation :

Suppose lx + my + n = 0 touches the parabola y2 = 4ax at (at2, 2at). However, ty = x + at2 is the equation of the tangent at (at2, 2at). Therefore

l/1 = m/-t = n/at2

⇒ - m/l = t = -n/ma

⇒ am2 = ln

14.

If 2x + y + k = 0 is a normal to the parabola y2 = − 8x, then the value of k is(A)  12(B)   24(C)  − 12(D)  − 24

Answer»

Correct option (B)  24

Explanation :

Suppose 2x + y + k = 0 is normal at (-2t2, -4t). However, the normal at (-2t2, -4t) is

tx + y = -4t - 2t3

⇒ tx + y + 4t + 2t3 = 0

Therefore

t/2 = 1/1 = 4t + 2t3/k

⇒ t = 2 and k = 24

15.

If two tangents to a parabola make complementary angles with the axis, then show that their point of intersection lies on the line x = a.

Answer»

Let the tangents at t1 and t2 make complementary angles, say α and β, with the axis of the parabola. Therefore

tan α = 1/t1

and  tan β = 1/t2

and suppose α + β = 90º ⇒ t1t2 = 1. Since the abscissa of the point of intersection of the tangent at t1 and t2 is at1t2 = a, the point of intersection lies on the line x = a.

16.

If the line y = x touches the parabola y = x2 + bx + c at the point (1, 1), then(A)   b = 0, c = −1(B)   b = −1, c = Z(C)   b = −1, c = −1(D)  b = −1, c = 1

Answer»

Correct option   (D)  b = −1, c = 1

Explanation :

The point (1, 1) lies on the parabola, which implies that

b + c = 0  ...(1)

 Also, y = x touches the parabola

⇒ the quadratic x2 + (b - 1) x + c = 0 has equal roots

⇒ (b - 1)2 - 4c = 0

Therefore, from Eq. (4.108), we get

(b - 1)2 + 4b = 0

⇒(b + 1)2 = 0

⇒b = -1 and c = 1

17.

Find the eccentricity of the ellipse \(\rm \frac{x^2}{16} + \frac{y^2}{25} = 1\)?1. 12. 2/33. 3/54. 4/5

Answer» Correct Answer - Option 3 : 3/5

Concept:

Ellipse:

Equation

\(\rm \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) (a > b)

\(\rm \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) (a < b)

Equation of Major axis

y = 0

x = 0

Equation of Minor axis

x = 0

y = 0

Length of Major axis

2a

2b

Length of Minor axis

2b

2a

Vertices

(± a, 0)

(0, ± b)

Focus

(± ae, 0)

(0, ± be)

Directrix

x = ± a/e

y = ± b/e

Center

(0, 0)

(0, 0)

Eccentricity

\(\rm \sqrt{1-\frac{b^2}{a^2}}\)

\(\rm \sqrt{1-\frac{a^2}{b^2}}\)

 

Calculation:

Given: \(\rm \frac{x^2}{16} + \frac{y^2}{25} = 1\)

Compare with the standard equation \(\rm \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)

So, a2 = 16 and b2 = 25 ⇔ a = 4 and b = 5 (b > a)

So, eccentricity = \(\rm \sqrt{1-\frac{a^2}{b^2}}\)

= \(\sqrt{1-\frac{16}{25}}\)

= 3/5

18.

What is the equation of the ellipse having foci (±2,0) and the eccentricity 1/21. \(\rm \frac{x^2}{6}-\frac{y^2}{16}=1\)2. \(\rm \frac{x^2}{12}+\frac{y^2}{16}=1\)3. \(\rm \frac{x^2}{16}+\frac{y^2}{12}=1\)4. \(\rm \frac{x^2}{4}+\frac{y^2}{144}=1\)

Answer» Correct Answer - Option 3 : \(\rm \frac{x^2}{16}+\frac{y^2}{12}=1\)

Concept:

Equation of ellipse: \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)

Foci: (±ae, 0)

Eccentricity, e = \(\rm \sqrt{1-\frac{b^2}{a^2}}\)

 

Calculation:

Here,foci = (±2,0) = (±ae, 0) and the eccentricity, e = 1/2

ae = 2 

⇒ a × 1/2 = 2 

⇒ a = 4

⇒ a2 = 16

Now, e = \(\rm \sqrt{1-\frac{b^2}{a^2}}\)

⇒ b2= a2(1 - e2)

= 16(1 - 1/4)

= 16× (3/4)

= 12

∴ Equation of ellipse = \(\rm \frac{x^2}{16}+\frac{y^2}{12}=1\)

Hence, option (3) is correct.

19.

Find the equation of the hyperbola whose foci are (± 5, 0) and the conjugate axis is of length 8 ?1. \(\frac{{{x^2}}}{{{9}}} - \frac{{{y^2}}}{{{16}}} = 1\)2. \(\frac{{{x^2}}}{{{9}}} - \frac{{{y^2}}}{{{7}}} = 1\)3. \(\frac{{{x^2}}}{{{25}}} - \frac{{{y^2}}}{{{16}}} = 1\)4. None of these

Answer» Correct Answer - Option 1 : \(\frac{{{x^2}}}{{{9}}} - \frac{{{y^2}}}{{{16}}} = 1\)

CONCEPT:

The properties of a rectangular hyperbola \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) are:

  • Its centre is given by: (0, 0)
  • Its foci are given by: (- ae, 0) and (ae, 0)
  • Its vertices are given by: (- a, 0)  and (a, 0)
  • Its eccentricity is given by: \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)
  • Length of transverse axis = 2a and its equation is y = 0.
  • Length of conjugate axis = 2b and its equation is x = 0.
  • Length of its latus rectum is given by: \(\frac{2b^2}{a}\)

CALCULATION:

Here, we have to find the equation of the hyperbola whose foci are (± 5, 0) and the conjugate axis is of length 8.

By comparing the foci (± 5, 0) with (± ae, 0)

⇒ ae = 5

∵ Length of the conjugate axis is given by 2b

⇒ 2b = 8

⇒ b = 4

As we know that, eccentricity of a hyperbola is given by \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)

⇒ a2e2 = a2 + b2

⇒ 25 = a2 + 16

⇒ a2 = 9

So, the equation of the required hyperbola is \(\frac{{{x^2}}}{{{9}}} - \frac{{{y^2}}}{{{16}}} = 1\)

Hence, option A is the correct answer.

20.

The equation of the hyperbola with center at the origin, length  of the transverse axis is 6 and one focus at (0, 4) is ?1. \(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\)2. \(\rm \frac {y^2} 9 - \frac {x^2} 7 = 1\)3. \(\rm \frac {y^2} 9 + \frac {x^2} 9 = 1\)4. \(\rm \frac {y^2} 7 + \frac {x^2} 9 = 1\)

Answer» Correct Answer - Option 1 : \(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\)

Concept:

The equation of the hyperbola is \(\rm \dfrac {y^2}{b^2}- \dfrac{x^2}{a^2} = 1\) with the foci (0 , ± ae

Length of the transverse axis =  2a

 

Calculations: 

Since the coordinates of the one focus at (0, 4) = (0 , ± ae) , it is a case of vertical hyperbola

⇒ ae = 4

It is a case of vertical hyperbola

⇒ The equation of hyperbola is \(\rm \dfrac {y^2}{b^2}- \dfrac{x^2}{a^2} = 1\) ....(1) 

 Length of the transverse axis = 6

⇒ 2a=6

⇒  a = 3

\(\rm \text {Also}\;\;a^2e^2 = a ^ 2+ b^2\)

\(\rm 4^2 =3 ^ 2+ b^2\)

\(\rm b^2 = 7\)

Equation (1) becomes 

\(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\)

Hence, The equation of the hyperbola with center at the origin, length  of the transverse axis is 6 and one focus at (0, 4) is \(\rm \frac {y^2} 7 - \frac {x^2} 9 = 1\) 

21.

The eccentricity of the hyperbola \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\) is1. \(\sqrt { \frac{3}{4}}\)2. \(\sqrt { \frac{5}{4}}\)3. \(\sqrt { \frac{7}{4}}\)4. \(\sqrt { \frac{7}{3}}\)

Answer» Correct Answer - Option 3 : \(\sqrt { \frac{7}{4}}\)

Concept:

Standard equation of an hyperbola : \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) 

  • Coordinates of foci = (± ae, 0)
  • Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 + b2
  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\)

Compare with the standard equation of a hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 100 and b2 = 75

Now, Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) 

\(\sqrt {1 + \frac{75}{100}}\)

\(\sqrt {1 + \frac{3}{4}}\)

\(\sqrt { \frac{7}{4}}\)

22.

Equation of the hyperbola whose foci are (5,0) and (-3,0), eccentricity = 2, is1. \(\rm {x^2\over 4}-{y^2\over 12} = 1\)2. \(\rm {(x-1)^2\over 4}-{y^2\over 12} = 1\)3. \(\rm {(x-1)^2\over 4}-{y^2\over 16} = 1\)4. \(\rm {(x-1)^2\over 16}-{y^2\over 4} = 1\)

Answer» Correct Answer - Option 2 : \(\rm {(x-1)^2\over 4}-{y^2\over 12} = 1\)

Concept:

The standard equation of a hyperbola:

\(\rm {(x-h)^2\over a^2}-{(y-k)^2\over b^2} = 1\)

where 2a and 2b are the length of the transverse axis and conjugate axis respectively and centre (h, k)

Note: The centre is the midpoint of the 2 foci.

The eccentricity = \(\rm \sqrt{a^2+b^2}\over a\)

Length of latus recta = \(\rm 2b^2 \over a\)

Distance from center to focus = \(\rm \sqrt{a^2+b^2}\)

Calculation:

Given foci are (5,0) and (-3,0)

Center = \(\rm \left({5+(-3)\over2},{0+0\over2}\right)\) = (1, 0)

Now distance of focus from the center = \(\rm \sqrt{a^2+b^2}\)

⇒ \(\rm \sqrt{(5-1)^2+(0-0)^2} = \rm \sqrt{a^2+b^2}\)

⇒ a2 + b2 = 16               ...(i)

The eccentricity = \(\rm \sqrt{a^2+b^2}\over a\)

⇒ 2 = \(\rm \sqrt{16}\over a\) 

⇒ a = 2

Putting it in (i)

⇒ 4 + b2 = 16

⇒ b2 = 12

a2 = 4

The equation of the hyperbola

\(\rm {(x-h)^2\over a^2}-{(y-k)^2\over b^2} = 1\)

⇒ \(\rm {(x-1)^2\over 4}-{(y-0)^2\over 12} = 1\)

⇒ \(\boldsymbol{\rm {(x-1)^2\over 4}-{y^2\over 12} = 1}\)

23.

The equation of the ellipse having foci (2, 0), ( -2, 0) and minor axis of length 8 units is:1. \(\rm \frac{x^2}{16}+\frac{y^2}{20}=1\)2. \(\rm \frac{x^2}{20}+\frac{y^2}{16}=1\)3. \(\rm \frac{x^2}{2\sqrt5}+\frac{y^2}{4}=1\)4. \(\rm \frac{x^2}{4}+\frac{y^2}{2\sqrt5}=1\)

Answer» Correct Answer - Option 2 : \(\rm \frac{x^2}{20}+\frac{y^2}{16}=1\)

Concept:

The distance between the centre and the focus of an ellipse is c = ae

The equation of an ellipse with the length of the major axis 2a and the minor axis 2b is given by: \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\).

 

Calculation:

Length of the minor axis = 2b = 8.

⇒ b = 4.

Also, c = distance between the centre and the focus = ae = 2.

c2 = a2e2 = a2 - b2

∴ 22 = a2 - 42

⇒ a2 = 20

Equation of the ellipse = \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\).

⇒ \(\rm \frac{x^2}{20}+\frac{y^2}{16}=1\).

24.

Suppose the normals at three different points on the parabola y2 = 4x pass through the point (h, 0). Show that h &gt; 2

Answer»

Let t1, t2 and t3 be the parameters of the feet of the normals drawn from (h, 0). Hence, t1, t2 and t3 are the roots of the cubic equation t3 + (2 - h)t = 0. That is, t1, t2 and t3 are the roots of t(t2 + 2 - h) = 0 Since the equation has three roots, h must be greater than 2. 

25.

The foci of a hyperbola coincide with the foci of the ellipse \(\rm \frac{x^2}{25}+\frac{y^2}{16}=1\), find the equation of the hyperbola if its eccentricity is 3.1. \(\rm \frac{x^2}{1}-\frac{y^2}{8}=1\)2. \(\rm \frac{x^2}{8}-\frac{y^2}{1}=1\)3. \(\rm \frac{x^2}{9}-\frac{y^2}{16}=1\)4. \(\rm \frac{x^2}{25}-\frac{y^2}{16}=1\)

Answer» Correct Answer - Option 1 : \(\rm \frac{x^2}{1}-\frac{y^2}{8}=1\)

Concept:

The distance between a focus of the ellipse \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) and its center is denoted by c and is equal to c2 = a2 - b2.

The distance between a focus of a hyperbola \(\rm \frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) and its center is denoted by c and is equal to c2 = a2 + b2, and its eccentricity e is equal to \(\rm \frac{c}{a}\).

 

Calculation:

The distance between the focus and the center of the ellipse \(\rm \frac{x^2}{25}+\frac{y^2}{16}=1\) is c2 = 25 - 16 = 9 

⇒ c = 3.

Since the hyperbola has the same foci, its c will be the same as that of the ellipse.

Using e = \(\rm \frac{c}{a}\) for the hyperbola, we get:

3 = \(\rm \frac{3}{a}\)

⇒ a = 1

Using c2 = a2 + b2, we get:

32 = 12 + b2

⇒ b2 = 8.

The equation of the hyperbola is \(\rm \frac{x^2}{1}-\frac{y^2}{8}=1\).

26.

The foci of the ellipse \(\rm \frac {x^2}{16} + \frac {y^2}{b^2} = 1\) and the hyperbola \(\rm \frac {x^2}{144} - \frac {y^2}{81} = \frac {1}{25}\) coincide. Then the value of b2 is1. 52. 73. 94. 1

Answer» Correct Answer - Option 2 : 7

Concept:

The eccentricity of the curve \(\rm \frac {x^2}{a^2} + \frac {y^2}{b^2} = 1\) is \(\rm e^2 = 1-\left({b^2\over a^2}\right)\)

The eccentricity of the curve \(\rm \frac {x^2}{a^2} - \frac {y^2}{b^2} = 1\) is \(\rm e^2 = 1+\left({b^2\over a^2}\right)\)

Foci of Hyperbola and Ellipse are (ae, 0) and (4e, 0)

 

Calculation:

For given Hyperbola \(\rm \frac {x^2}{144} - \frac {y^2}{81} = \frac {1}{25}\)

⇒ \(\rm \frac {25}{144}x^2 - \frac {25}{81}y^2 = 1\)

∴ \(\rm {a_h}^2 = \frac{144}{25}\) and \(\rm {b_h}^2 = \frac{81}{25}\)

Eccentricity of hyperbola 

\(\rm {e_h}^2 = 1+\left({{b_h}^2\over {a_h}^2}\right)\)

⇒ \(\rm {e_h}^2 = 1+\left({81\over 144}\right)\)

⇒ \(\rm {e_h}^2 = \frac{225}{144}⇒\boldsymbol{\rm e_h=\frac{15}{12}}\)

Focus of hyperbola Fh = (aheh, 0), Where eh is the eccentricity of the hyperbola.

⇒ Fh = \(\rm \left(\left(\frac{12}{5}\times\frac{15}{12}\right), 0\right)\) 

⇒ Fh = (3, 0)

 

For given Ellipse \(\rm\frac {x^2}{16} + \frac {y^2}{b^2} =1\)

∴ \(\rm {a_e}^2 = 16\) and \(\rm {b_e}^2 = b^2\)

Focus of ellipse Fe = (ae, 0) = (4ee, 0), Where ee is eccentricity of the ellipse.

Given Focus of ellipse Fe = Fh 

⇒ (4ee, 0) = (3, 0)

⇒ 4ee = 3 ⇒ ee = \(\rm \boldsymbol {3\over4}\)

Also Eccentricity of an ellipse

\(\rm {e_e}^2 = 1-\left({{b_e}^2\over {a_e}^2}\right)\)

⇒ \(\rm \left({3\over4}\right)^2 = 1-\left({{b}^2\over {4}^2}\right)\)

⇒ \(\rm 1-{9\over16} = {{b}^2\over16}\)

⇒ b2 = 7

27.

The orthocentre of a triangle formed by three tangents to a parabola y2 = 8x lies on(a)  x + 1 = 0(b)  x + 2 = 0(c)  x + = 0(d)  x - 1 = 0

Answer»

Correct option  (B) x + 2 = 0

Explanation :

Orthocentre of a triangle formed by three tangents to the parabola y2 = 4ax lies on the directrix x + a = 0 (see Problem 4 in the section ‘Subjective Problems’). Here, a = 2 gives that the orthocentre lies on the line x = 2 = 0.

28.

The locus of the point of intersection of perpendicular tangents to a parabola is the directrix of the parabola. This locus is called director circle even though it is a line.

Answer»

The line

y = mx + a/m and y = -x/m - am

are tangents to the parabola and they intersect at right angles. Their point of intersection satisfies the equation 

x(m + 1/m) = -a(m + 1/m)

Hence, the locus of the point of intersection is the line x −a which is the directrix.

29.

Prove that the circumcircle of a triangle formed by three tangents to a parabola passes through the focus of the parabola.

Answer»

Let the tangents be

try = x + atr2

where r = 1, 2 and 3. By Problem 1, the feet of the perpendiculars drawn from the focus of the parabola onto the three tangents (which are the sides of a triangle) are collinear on the tangent at the vertex. Hence, from the section ‘Pedal Line (or Simson’s Line)’ , the circumcircle of the triangle passes through the focus.

30.

If (x1, y1) and (x2, y2) are two points on the parabola y2 = 8x, at which the normals to the curve intersect on the curve, then(A)  x1 x2 = 8(B)  y1 y2 = 16(C)  y1 y2 = 32(D)  x1 x2 = 16

Answer»

Correct option (C), (D)

Explanation :

If the normals at (at12, 2at1) and (at22, 2at2) meet again on the curve, then, x1x2 = 4a2 and  y1y2 = 8a2. Here, a = 2.

31.

The parametric coordinate of any point of the parabola y2 = 4ax is1. (at², 2at)2. (-at², 2at) 3. (a sin2 t, -2a sin t)4. None of these

Answer» Correct Answer - Option 1 : (at², 2at)

Calculation:

Parabola

Parametric
equation

y2 = 4ax(at2, 2at)
y2 = -4ax(-at2, 2at)
x2 = +4ay(2at, at2)
x2 = -4ay(2at, -at2)
(y - k2) = 4a(x - h)(h + at2, k + 2at)
(y - p2) = 4b(y - q)(p + 2at, q + at2)

Here, the given parabola is y2 = 4ax

So, its parametric coordinate is (at², 2at)

We can check it by putting the above point in the equation of parabole 

L.H.S = y2

⇒ (2at)2

⇒ 4a2t2     -----(i)

R.H.S = 4ax

⇒ 4 × a × at2

⇒ 4a2t2     -----(ii)

From (i) and (ii), we get 

∴ (at², 2at) is the parametric coordinates of the parabola y = 4ax.

32.

A point P of the parabola y2 = 4ax lies on the line y = x. The normal chord PQ, normal at P, subtends an angle at the focus of the parabola which equal(A)  60º(B)  45º(C) 30º(D)  90º

Answer»

Correct option (D)  90º

Explanation :

Let P be (at2, 2at) so that t = 2 because it lies on the line y = x. Suppose normal at P meets the curve at Q = (at'2 , 2at'). So

t'2 = -t - 2/t = -2 - 1 (∴ t -= 2)

Therefore, Q = (9a, - 6a) and P = (4a, 4a). Now

Slop of SP x Slop of SQ = (4a/4a - a)(6a/a - 9a)

= 4/3(-6/8) = -1

Hence,∠PSQ = 90º

33.

Show that the locus of the midpoints of chords of a parabola passing through the vertex is in turn a parabola whose latus rectum is half of the latus rectum of the original. 

Answer»

The equation of the chord in terms of its midpoint M(x1, y1) is

S1 = S11

⇒ yy1 - 2a(x + x1) = y12 - 4ax1

yy1 - 2ax = y12 - 2ax1 which passes through (0,0)

y12 - 2ax1 = 0

Hence, the locus of M(x1, y1) is the parabola y2 = 2ax.

34.

x=t2+ 1 &amp; y = 2t +1. Tha cartesian equation of its directrix is

Answer»

We have the equations

x = t2 +1 ...(1)

y = 2t + 1 ...(2)

From (1) and (2), we get

(– 1)= 4 (x – 1) ...(3)

Let Y = – 1 and  X = x – 1

Then from equation (3) we have

⇒ Y2 = 4X

Equation of the directrix for parabola Y2 = 4is:

X = –1

⇒ x – 1 –1

⇒ x = 0

This is the required equation of directrix.

35.

Equation of hyperbola whose asymptotes are 3x ± 5y = 0 and vertices are (± 5, 0) is1. 9x2 - 25y2 = 2252. 25x2 - 9y2 = 2253. 5x2 - 3y2 = 2254. 3x2 - 5y2 = 225

Answer» Correct Answer - Option 1 : 9x2 - 25y2 = 225

Concept:

The equation of the hyperbola is:

\(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) 

The vertices are (± a, 0)

The asymptotes are the straight lines:

y = (b/a)x and y = -(b/a)x.

Given:

Vertices are (± 5, 0)       

Asymptotes are: 3x ± 5y = 0

Analysis:

5y = 3x & 5y = -3x

\(y = \left( {\frac{3}{5}} \right)x\;\& \;y = - \left( {\frac{3}{5}} \right)x\) 

a = 5 and b = 3

Equation of hyperbola:

\(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{9} = 1\) 

9x2 – 25y2 = 225

36.

Find the vertex, focus, directrix and latus rectum of the parabola y2 + 4x - 2y + 3 = 0.

Answer»

The given equation is written as

(y - 1)2 = -4(x + 1/2)

Let X = x + 1/2 and Y = y -1

Then we have

Y2 = -4X 

 Therefore, the vertex is given by

(X = 0,Y = 0) = (-1/2, 1)

 Since a = 1, the focus (X = −1, Y = 0) is

X = a or x + 1/2 = 1 or x - 1/2 = 0

 The latus rectum is given by 4a = 4