InterviewSolution
Saved Bookmarks
| 1. |
Equation of hyperbola whose asymptotes are 3x ± 5y = 0 and vertices are (± 5, 0) is1. 9x2 - 25y2 = 2252. 25x2 - 9y2 = 2253. 5x2 - 3y2 = 2254. 3x2 - 5y2 = 225 |
|
Answer» Correct Answer - Option 1 : 9x2 - 25y2 = 225 Concept: The equation of the hyperbola is: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) The vertices are (± a, 0) The asymptotes are the straight lines: y = (b/a)x and y = -(b/a)x. Given: Vertices are (± 5, 0) Asymptotes are: 3x ± 5y = 0 Analysis: 5y = 3x & 5y = -3x \(y = \left( {\frac{3}{5}} \right)x\;\& \;y = - \left( {\frac{3}{5}} \right)x\) ∴ a = 5 and b = 3 Equation of hyperbola: \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{9} = 1\) 9x2 – 25y2 = 225 |
|