InterviewSolution
Saved Bookmarks
| 1. |
What is the equation of the ellipse having foci (±2,0) and the eccentricity 1/21. \(\rm \frac{x^2}{6}-\frac{y^2}{16}=1\)2. \(\rm \frac{x^2}{12}+\frac{y^2}{16}=1\)3. \(\rm \frac{x^2}{16}+\frac{y^2}{12}=1\)4. \(\rm \frac{x^2}{4}+\frac{y^2}{144}=1\) |
|
Answer» Correct Answer - Option 3 : \(\rm \frac{x^2}{16}+\frac{y^2}{12}=1\) Concept: Equation of ellipse: \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) Foci: (±ae, 0) Eccentricity, e = \(\rm \sqrt{1-\frac{b^2}{a^2}}\)
Calculation: Here,foci = (±2,0) = (±ae, 0) and the eccentricity, e = 1/2 ae = 2 ⇒ a × 1/2 = 2 ⇒ a = 4 ⇒ a2 = 16 Now, e = \(\rm \sqrt{1-\frac{b^2}{a^2}}\) ⇒ b2= a2(1 - e2) = 16(1 - 1/4) = 16× (3/4) = 12 ∴ Equation of ellipse = \(\rm \frac{x^2}{16}+\frac{y^2}{12}=1\) Hence, option (3) is correct. |
|