

InterviewSolution
Saved Bookmarks
1. |
The equation to the straight line passing through the point `(a "cos"^(3) theta, a "sin"^(3) theta)` and perpendicular to the line `x "sec" theta + y"cosec" theta = a` isA. `x "cos " theta-y "sin" theta = a "cos" 2theta`B. `x "cos " theta+y "sin" theta = a "cos" 2theta`C. `x "sin" theta+y "cos" theta = a "cos" 2theta`D. none of these |
Answer» Correct Answer - A The line perpendicular to `x "sec" theta + y "cosec" theta = a` is `x "cosec" theta-y "sec"theta = lambda` This line passes through the point `(a "cos"^(3) theta, a "sin"^(3) theta)`. Then, `(a "cos"^(3) theta)"cosec" theta -(a "sin"^(3)theta) "sec" theta=lambda` `"or " lambda = a(( "cos"^(3) theta)/("sin"theta) - ("sin"^(3) theta)/("cos"theta))` `= a(( "cos"2 theta)/("cos"theta "sin"theta))` |
|