1.

The following figures are parallelograms. Find the degree values of the unknowns x, y, z.

Answer»

(i) ∠ABC = ∠y = 100o (opposite angles are equal in a parallelogram)

∠x + ∠y = 180o (sum of adjacent angles is = 180in a parallelogram)

∠x + 100o = 180o

∠x = 180o – 100o

= 80o

∴ ∠x = 80o ∠y = 100o∠z = 80o (opposite angles are equal in a parallelogram)

(ii) ∠RSP + ∠y = 180o (sum of adjacent angles is = 180in a parallelogram)

∠y + 50o = 180o

∠y = 180o – 50o

= 130o

∴ ∠x = ∠y = 130o (opposite angles are equal in a parallelogram)

∠RSP = ∠RQP = 50o (opposite angles are equal in a parallelogram)

∠RQP + ∠z = 180o (linear pair)

50o + ∠z = 180o

∠z = 180o – 50o

= 130o

∴ ∠x = 130o ∠y = 130o ∠z = 130o

(iii) In ΔPMN

∠NPM + ∠NMP + ∠MNP = 180° [Sum of all the angles of a triangle is 180°]

30° + 90° + ∠z = 180°

∠z = 180°-120°

= 60°

∠y = ∠z = 60° [opposite angles are equal in a parallelogram]

∠z = 180°-120° [sum of the adjacent angles is equal to 180° in a parallelogram]

∠z = 60°

∠z + ∠LMN = 180° [sum of the adjacent angles is equal to 180° in a parallelogram]

60° + 90°+ ∠x = 180°

∠x = 180°-150°

∠x = 30°

∴ ∠x = 30o ∠y = 60o ∠z = 60o

(iv) ∠x = 90° [vertically opposite angles are equal]

In ΔDOC

∠x + ∠y + 30° = 180° [Sum of all the angles of a triangle is 180°]

90° + 30° + ∠y = 180°

∠y = 180°-120°

∠y = 60°

∠y = ∠z = 60° [alternate interior angles are equal]

∴ ∠x = 90o ∠y = 60o ∠z = 60o

(v) ∠x + ∠POR = 180° [sum of the adjacent angles is equal to 180° in a parallelogram]

∠x + 80° = 180°

∠x = 180°-80°

∠x = 100°

∠y = 80° [opposite angles are equal in a parallelogram]

∠SRQ =∠x = 100°

∠SRQ + ∠z = 180° [Linear pair]

100° + ∠z = 180°

∠z = 180°-100°

∠z = 80°

∴ ∠x = 100o ∠y = 80o ∠z = 80o

(vi) ∠y = 112° [In a parallelogram opposite angles are equal]

∠y + ∠VUT = 180° [In a parallelogram sum of the adjacent angles is equal to 180°]

∠z + 40° + 112° = 180°

∠z = 180°-152°

∠z = 28°

∠z =∠x = 28° [alternate interior angles are equal]

∴ ∠x = 28o ∠y = 112o ∠z = 28o



Discussion

No Comment Found