InterviewSolution
Saved Bookmarks
| 1. |
The function f : [0, ∞) → [0, ∞) defined by \(f(x) = \frac{2x}{1+2x}\) is(a) one-one and onto (b) one-one but not onto (c) not one-one but onto (d) neither one-one nor onto |
|
Answer» Answer : (b) one-one but not onto For all (x1, x2) ∈ [0, ∞) f (x1) = f (x2) ⇒\(\frac{2x_1}{1+2x_1}\) = \(\frac{2x_2}{1+2x_2}\) ⇒ 2x1 + 4x1x2 = 2x2 + 4x1x2 ⇒ 2x1 = 2x2 ⇒ x1 = x2 ⇒ f is one-one. Let y = f(x) = \(\frac{2x}{1+2x}\) ⇒ y + 2xy = 2x ⇒ y = 2x – 2xy = 2x (1 – y) ⇒ x = \(\frac{y}{2(1-y)}\) x is not defined when (1 – y) = 0, i.e., y = 1 ∈ [0, ∞) ⇒ f is not onto ∴ f is one-one, not onto. |
|