1.

The function f : [0, ∞) → [0, ∞) defined by \(f(x) = \frac{2x}{1+2x}\) is(a) one-one and onto (b) one-one but not onto (c) not one-one but onto (d) neither one-one nor onto

Answer»

Answer : (b) one-one but not onto

For all (x1, x2) ∈ [0, ∞) 

f (x1) = f (x2) 

\(\frac{2x_1}{1+2x_1}\) = \(\frac{2x_2}{1+2x_2}\) 

⇒ 2x1 + 4x1x2 = 2x2 + 4x1x2

⇒ 2x1 = 2x2 ⇒ x1 = x2 

f is one-one.

Let  y = f(x) = \(\frac{2x}{1+2x}\) 

⇒ y + 2xy = 2x 

⇒ y = 2x – 2xy = 2x (1 – y) 

⇒ x = \(\frac{y}{2(1-y)}\) 

x is not defined when (1 – y) = 0, i.e., y = 1 ∈ [0, ∞) 

⇒ f is not onto 

 ∴  f is one-one, not onto.



Discussion

No Comment Found