1.

The function f(x) = \(\displaystyle\sum_{r=1}^{5} (x-r)^2\) assumes minimum value at x = A. 5 B. \(\frac{5}{2}\)C. 3 D. 2

Answer»

Option : (C)

\(\displaystyle\sum_{r=1}^{5} (x-r)^2\) 

f(x) = (x - 1)+ (x - 2)+ (x - 3)+ (x - 4)+ (x - 5)2

f’(x) = 2 [5x - 15] 

f’(x) = 0 ; x = 3 

Hence by second derivative test 

f’’(x) > 0 so it’s a point of minimum. 

f”(x) = 1 > 0 so At x = 3 minimum value.



Discussion

No Comment Found